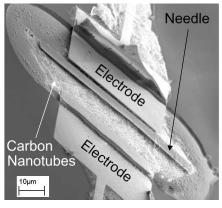


NanoCompass: A Nano-Scale Sensor

Uses carbon nanotubes to reduce:

- size

- weight


- power requirements

while increasing capabilities:

- spatial resolution

- sensor density (increased data)

- parallel measurements

Features	NanoCompass
	(compared to state-of-art fluxgate)
Size	100,000 times smaller
Weight (mass)	99% lighter
Power needs	Requires 0.1%–1% the power
Resolution	1,000 times higher

Example application: Magnetic <u>touch</u> reader Easy, reliable to use At least 10x more data stored Magnetic card has longer life

2

NanoCompass: A Nano-Scale Sensor

- Terrestrial applications
 - > Handheld/sensor net for military and Homeland Security
 - RFID "smart dust" to detect armored vehicle movements
 - Low power, small size → many sensors for good signal coverage
 - ➤ Magnetic data storage readers
 - · Touch cards possible with low-cost magnetic storage
 - Parallel reader → easy to read, longer life
 - > Small personal compasses and GPS devices
 - Can be integrated into cell phones, PDAs
 - Low power, small size → compatible with existing battery technology
- · Magnetometers are also used for:
 - Portable oil, gas, and nuclear monitoring devices
 - Health care diagnostics (MRI)
 - Small probes for integrated circuit quality assurance

Competing Technologies

- SQUIDs (Superconducting Quantum Interference Devices) cryogenic operation
- Fluxgate magnetometers bulky, low spatial resolution
- Hall sensors milliTesla sensitivity, 10s of mW power consumption

3

Market

- · Revenues in magnetic sensor components industry
 - totaled ~\$1B in 2005
 - could reach ~\$2B in 2012 (F&S 2006)
- Key market drivers
 - Growth of automotive electronic control systems
 - Increasing demand for computer and electronic products
 - Short shelf-life of consumer electronic products
- Key technical attributes: NanoCompass
 - ❖ Smaller size
 - Lighter weight
 - ❖ Better performance
 - ❖ Micromachining approach uses widespread microfab infrastructure

4

Plan Forward

- Commercialization plan
 - Prototype development: September 2007
 - License technology for commercial/terrestrial applications
 - Prototype optimization: September 2008
 - NASA as customer for commercialized NanoCompass

Partnership opportunities

- Low noise, low power, low mass electronic components
 - power supplies
 - · lock-in amplifiers
 - · multiplexing approaches
- Packaging for contamination mitigation
- Facilities available to partners:
 - Detector Development Lab (micro- and nanofabrication)
 - · Radiation Effects Facility
 - · Carbon nanotube growth facility

5

Contact Information

Dr. Stephanie Getty, Materials Engineer–Nanotechnology
NASA Goddard Space Flight Center (GSFC), Materials
Engineering Branch, Code 541

(301) 286-9760

Stephanie.A.Getty@nasa.gov

- Provisional patent application filed in June 2006
- Funded through internal NASA GSFC R&D funds

For more information on partnership and licensing opportunities, please visit http://ipp.gsfc.nasa.gov/ft-tech-NanoCompass.html

6